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Structure of
CTB-GM1o0s Complex

Branched oligosaccharide holds the protein in a “two fingered grip”
Extensive H-bonding between the three terminal residues and the protein

Remaining sugars point away from the protein — site of lipid attachment

’ E.A. Merritt, P. Kuhn, S. Sarfaty, J.L. Erbe, R.K. Holmes, W.G.J. Hol, J. Mol. Biol. 1998, 282, 1043-1059. ‘

Receptor-ligand interaction
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MX
Ka = % Units: L/ mol
K = [M][X] Units: mol /L
d [MX] i.e. Ky is a concentration

High affinity = large K, small K




Basic Thermodynamics...

e

MX

AG°=-RTInK,

AG® = AH® - TAS®

Free Energy Enthalpy Entropy

High affinity = large K,, small Ky, large —AG°

Changes in heat

Structure of the complex
*Hydrogen bonding
*Van der Waals

*Structure of the solvent

* j.e. water

AG°® = AH® -TAS®




Entropy

AG°® = AH® -TAS®

Changes in disorder

* Independent rotational and
translational degrees of
freedom

* A complex is less disordered
than two molecules

* Internal conformational
dynamics

*Flexible molecules lose entropy
on binding

* Dynamics of the solvent

* j.e. water

Calorimetry — Measuring Heat

» Lavoisier and Laplace calorimeter to measure the element
“caloric” in a sample of combustible oil (1784)

* 0il burned in a lamp surrounded by ice
* heat determined by measuring amount of melted ice




Microcalorimetry  : reaqosc

Differential Scanning Calorimetry -
+ Solution heated/cooled from 10-100 °C
+ Used to measure unfolding temp and AH®

0“‘ g
Isothermal Titration Calorimetry \/’\/’

+ Sample maintained at constant temp while two solutions are mixed
* Used to measure

« protein-ligand interactions

* enzyme reactions
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What’s Inside an Isothermal
Titration Calorimeter?

J<— Ligand in syringe

| | |

Thermal bath

maintains constant =
temperature
reference cell _| (E}} L sample cell

Physical measure of heat =———-
released

Power feedback maintains
constant temperature in both cells
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What’s Inside an Isothermal
Titration Calorimeter?

Sample cells
surrounded by a solid-
state thermal bath

* 1 degree cooler than
reaction mixture

reference cell

L sample cell

Two calorimeter cells

* the sample cell - usually contains the
protein receptor solution
« the reference cell - usually contains water

11

What’s Inside an Isothermal
Titration Calorimeter?

Cooling bath allows
reaction cells to be kept at
a constant temperature by
two heaters - one for each
cell

Each heater is controlled
independently by a power
feedback system

reference cell

L sample cell

LS

If sample cell gets warmer
than reference cell - less
power supplied to sample
cell heater

Power feedback maintains
constant temperature in both cells
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Setting up the experiment (MicroCal VP-ITC)

Load the sample cell and the syringe

Load protein
into sample

' sample cell cell

rferonce ool

\\ / 1.4 mL or Careful! No
200 pL for air bubbles!

iTCzoo and
PEAQ-ITC

Suck ligand
into syringe

Careful! Don’t bend
that needle!

Ready to go...
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What’s Inside an Isothermal
Titration Calorimeter?

During a titration

-«—— Lijgand in syringe
* ligand added from syringe

* heat released when ligand | | |
and receptor interact

« temperature rises in the
sample cell

Bufferin  —— (e) — Receptor in cell
reference cell

If sample cell gets warmer Tt—1T

than reference cell - less

power supplied to sample Power feedback maintains
cell heater constant temperature in both cells
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The first injection

A small throw-away injection as ligand diffuses into the cell during equilibration...

i Microcal Origin - C:\Origin SO\VPITCPLOT.0P) - [Plot1]
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The second injection
Should be a lot bigger...

i Microcal Origin - C:\Origin SO\VPITCPLOT.0P) - [Plot1]
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The Titration Data

Raw ITC data is a measure of the power

Time (min) difference supplied to each cell
0 30 60 90 120

End of titration

« all binding sites occupied
— no further binding

« only “dilution peaks” on
adding more ligand

ucallsec

Around equivalence point

-6.0 -
* heat change decreases as binding
sites fill up

Start of titration
* large peaks — lots of complex formed on each injection

* equal height — virtually every ligand molecule becomes bound to
receptor

How do we determine AH° and AG° from the curve?
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How do we determine AH° and AG° from the curve?

For 1:1 binding of ligand X and receptor M X+M —= MX

dQ ! 1-((x]./[™],) - (K. /[M])

=AHV,| =+

d[x], 2 o[+ ([x0,/1M1,)+ (k. /DM1)] - 4((x],/IM])

T T T T T
-<—— X in syringe 0 4
]| 8
£ a4 4
°
g o :
£
: g S g 4
Bufferin — - Min cell i3
reference cell
107 T T T T
00 05 10 15 20
Isothermal Titration Calorimeter Molar Ratio
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How do we determine AH° and AG° from the curve?

For 1:1 binding of ligand X and receptor M X+M —= MX

dQ ! 1-((x]./[™],) - (K. /[M])

=AHV,| =+

d[x], 2 o[+ ([x0,/1M1,)+ (k. /DM1)] - 4((x],/IM])

Shape of the curve depends on the value of ¢

8
£ a4 -
°
1 [M] £ 1
C = = - ]{(llh/l]’I E 84 |
K,/[M], K, »
00 05 10 15 20
Molar Ratio
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The curve shape depends on the “c-value”

00 M]
c= P

0.2+ d
- c>10
> sigmoidal curve that
& becomes steeper as ¢
=06 increases
s
<

08 c<10

Curve becomes flatter
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The curve shape depends on the “c-value”

0.0 1_ [M]t
— c e K
0.2+ - d
c>1000
;‘f— 0.4+ - C=1000 | 4
§“ el [M]total >> Kd
S 064 - c=10 7
g c=1 slope is too steep to
08 —c=01 | 1 determine Ky
== c=0.01
=l * only AH° and n can

2 be measured

(X]/[M],

For very high affinity ligands (low K;) must use low receptor
concentration

But low [M] gives very small signals... Ky limit=1 nM

22
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The curve shape depends on the “c-value”

0.0

0.2+
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0.8+

Cholera Toxin binds GM10s with Ky =40 nM

If [CTB] = 10 uM then ¢ = 250

(X]/[M],

pcalls

kcal/mol of injectant

0.00 4 4

-0.50+ O:? .
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o
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The curve shape depends on the “c-value”

0.0

0.2+

=)
P
1

AQNAHX V)
s
@
1

S
@®
1

-1.0 =

(X]/[M],

[M]total << Kd

Curve becomes very
flat

For very low affinity ligands (high Ky) must use high receptor

concentration

But proteins often soluble to only 1 mM...

Ky limit =1 mM

24
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The Shape of the Binding Curve Changes if Receptor
Concentration is Higher or Lower than K,

Low c-value regime = —
Curve shape becomes
independent of [R];

[L]; >> K for saturation

= High c-value regime

2 ]

EIL

2 0.6

5 [R],/K,

2 —0.01

2 0.4+ e (.1

g When [R], > K, 1

@ '| Curve shape changes with [R], |~ 10

“ 024 | [LL> [R]for saturation —-50

— 100
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[ligand] / K,
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T 0.00

syr * inj

AQIAHX_V,)

T T T T 5 -0.10

2 3
X/ K,

(X],/ M},

For very low affinity ligands (high K;) can use low c-value titrations

But must add many equivalents of ligand... Ky limit = 50 mM?

W. B. Turnbull and A. H. Daranas, J. Am. Chem. Soc. 2003, 125, 14859-14866

Alternative Depiction of the ITC binding Isotherm

4 0.000
4 -0.002
4 -0.004
4 -0.006
4 -0.008

«-001C
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“c-value” curve with heat vs. ligand to K ratio

Time (min)
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Molar Ratio
AH° and Kj can still be determined but not

stoichiometry
Must know concentrations accurately

Cholera Toxin binds GalpOMe with Ky=15mM [CTB]=145uM c=0.01
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Dissecting the GM1-CTB Interaction

Objective: to evaluate the contribution that each monosaccharide
makes to the CTB—GMH1 interaction in solution.

Disconnect oligosaccharide into fragments and measure each
interaction with CTB

28
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Very high and very low affinity systems can
be studied using competition titrations

0 @

+ +
Low High
affinity affinity
complex complex

+ High affinity ligand added to a solution of the low affinity complex
+ High affinity ligand displaces the low affinity ligand
» Change in the apparent affinity and apparent enthalpy

+ If parameters for one ligand are known, possible to calculate for the other
ligand

29

Example Displacement Titrations

Time / min
0 30 60 9 120 0 30 60 90 120
T T T T T T T T
0.00 4 4

. 10 uM CTB
T\u -0.254 g 4
s
-0.504 G:? : O:? vs.C O:?
; ‘;: 110 pM
5 0] i :
g ] 1 f ] Oj
E -15 + ]
£ 1 ] Oor25mM
00 05 10 15 20 00 05 10 1.5 20
Molar Ratio
high affinity high affinity ligand plus
ligand a lower affinity ligand

Very steep curve for high affinity ligand becomes more
gentle in the presence of a lower affinity competing ligand

30
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Summary of ITC Results

Ligand K, AG° AH° TAS® n
calmol calmol calmol
OE? 433 +1.4nM | -10,040+20 | -17,450 + 30 -7,450 +30 | 1.00
o 14.8 + 1.6 mM -2,500 + 70 -9,020 = 480 -6,530 +480 | 0.94
E? 2.0+ 0.2 mM -3,670 £ 90 -4,350 + 480 -690 + 480 0.99
oo 7.6 £0.8 mM -2,890 = 80 -10,150 + 430 -7,270 = 450 1.06
021 0.1 M -920 + 280 -10,700 + 8,600 | -9,770 8340 | 1.06

L 2

GM1os pentasaccharide very high affinity ©g®

All fragments very low affinity

i i

’ W. B. Turnbull, B. L. Precious, S. W. Homans, J. Am. Chem. Soc. 2004, 126, 1047-1054
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Summary of ITC Results

Ligand K, AG° AH° TAS® n
calmol calmol calmol
43.3 +1.4 nM -10,040 + 20 -17,450 = 30 -7,450 + 30 1.00

O:g.

Big increase in affinity from Gal-GalNAc disaccharide to GM1

pentasaccharide
o 76:08mM | -2890+80 | -10,150+430 | -7,270 +450 | 1.06
< However, very similar TAS® for the two ligands.

Contribution of sialic acid is totally enthaplic

Implies extra interactions with no loss of

conformational entropy

32
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Change in Conformational Entropy on Binding

Terminal Gal-GalNAc linkage is more flexible than Sia-Gal linkage
* Greatest loss of conformational entropy for Gal binding

Middle subunit as a sausage depiction — the width of the sausage
indicates how much the backbone atoms move on binding

« Tightening of loop around galactose on binding

33

Warning! Be careful how you interpret AH°!

34
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AH° and TAS° change with temperature: AC,
23 \G® GM1os AH? — AH?
E o:? \H® GM10s ACP =—2 1
E -4 ——TAS’ GM1os Tz _Tl
3.
;g; AC = 7—'2AS§ _T{ASIO
T 25 28 30 2 2 36 38 P 712 — T{
Temperature / °C
Depends on AC, — the change in specific heat capacity on binding
— ability of the system to absorb heat
TASe also dependent on AC,, — Entropy-Enthalpy Compensation
AGP is essentially independent of temperature
35

AHP° can also be affected by coupled reactions
e.g., proton transfer

AHobserved = AI_Iinteraction + AI_Iproton transfer

€5 — @

- Phosphate

Ligand binding sometimes
coupled to proton transfer to or
from the protein...

120

Imidazole
L

AH (kcal mol”)

-size Of AHproton transter depends on the 1001

buffer ionisation enthalpy TRIS
- must repeat titration in several I
different buffers

80 1 I ' 1 1
0 2 4 6 8 10 12

3

> [[][‘[> AH ionisation (kcal mol™”)
6
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Time / min
0 30 60 90 120 0 30 60 90 120

Summary

0

ITC is a useful technique for studying many ¢,
concentration-dependent solution s
phenomena o) IV 0':9‘

Q:?vs.cj_
§° T
It is always preferable to have a sigmoidal £ =
curve 5 T
*+ 10 < ¢ <500 3"
00 05 10 15 20 0,0‘ 05 1.0 15 20
However low affinity systems can be studied e
as low c-value curves g

Low and high affinity systems can also be

’ r””]’m’ﬂmrﬂ”rnmv
studied by competition titrations

|

pealisec
IS

Q Garove=100mM
LTB =145 M

Beware the effects of coupled reactions and
AC, when interpreting AH°

bbo
RBIFEN3BIRBE &

keallmole of injectant
bobbbbbLS

20 2 40 @ 8 10120 140 160 180
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This afternoon —
demonstration of iTC,,
or PEAQ-ITC and ITC
data analysis
« Cell volume 200 mL A

* Faster equilibration

* Faster titrations

alll

at rest sample loading titration washing
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