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Cholera Toxin
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E.A. Merritt, P. Kuhn, S. Sarfaty, J.L. Erbe, R.K. Holmes, W.G.J. Hol, J. Mol. Biol. 1998, 282, 1043-1059.

Branched oligosaccharide holds the protein in a “two fingered grip”

Extensive H-bonding between the three terminal residues and the protein

Remaining sugars point away from the protein – site of lipid attachment 

Structure of
CTB-GM1os Complex
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Receptor-ligand interaction
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High affinity = large Ka, small Kd
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Units:  L / mol

Units:  mol / L
i.e. Kd is a concentration

M               X MX
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Basic Thermodynamics…

High affinity = large Ka, small Kd, large –DGo

aKlnRTG -=°D

°D-°D=°D STHG
Free Energy Enthalpy Entropy

M               X MX
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Changes in heat
Structure of the complex

•Hydrogen bonding

•Van der Waals

•Structure of the solvent

• i.e. water

°D-°D=°D STHG

Enthalpy

6



4

Changes in disorder
• Independent rotational and 
translational degrees of 
freedom

• A complex is less disordered 
than two molecules

• Internal conformational 
dynamics

•Flexible molecules lose entropy 
on binding

• Dynamics of the solvent

• i.e. water°D-°D=°D STHG

Entropy
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Calorimetry – Measuring Heat

• Lavoisier and Laplace calorimeter to measure the element 
“caloric” in a sample of combustible oil (1784)

• oil burned in a lamp surrounded by ice
• heat determined by measuring amount of melted ice
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Microcalorimetry 
Differential Scanning Calorimetry
• Solution heated/cooled from 10-100 oC
• Used to measure unfolding temp and DHº

Isothermal Titration Calorimetry
• Sample maintained at constant temp while two solutions are mixed
• Used to measure 

• protein-ligand interactions
• enzyme reactions
• DHº

VP-ITC ITC200 PEAQ-ITC

PEAQ-DSC
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What’s Inside an Isothermal 
Titration Calorimeter?

Thermal bath 
maintains constant 
temperature

Physical measure of heat 
released

reference cell sample cell

10



6

What’s Inside an Isothermal 
Titration Calorimeter?

Sample cells 
surrounded by a solid-
state thermal bath

• 1 degree cooler than 
reaction mixture

Two calorimeter cells
• the sample cell - usually contains the 
protein receptor solution
• the reference cell - usually contains water

reference cell sample cell
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What’s Inside an Isothermal 
Titration Calorimeter?

Cooling bath allows 
reaction cells to be kept at 
a constant temperature by 
two heaters - one for each 
cell

Each heater is controlled 
independently by a power 
feedback system

If sample cell gets warmer 
than reference cell - less 
power supplied to sample 
cell heater

reference cell sample cell
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Careful! Don’t bend 
that needle!

Setting up the experiment (MicroCal VP-ITC)
Load the sample cell and the syringe

reference cell
sample cell

1.4 mL or 
200 µL for 
iTC200 and
PEAQ-ITC

Suck ligand 
into syringe

Ready to go…

Load protein 
into sample 
cell

Careful! No 
air bubbles!
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What’s Inside an Isothermal 
Titration Calorimeter?

During a titration 

• ligand added from syringe

• heat released when ligand 
and receptor interact

• temperature rises in the 
sample cell

If sample cell gets warmer 
than reference cell - less 
power supplied to sample 
cell heater

14
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The first injection
A small throw-away injection as ligand diffuses into the cell during equilibration…  
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The second injection
Should be a lot bigger…  
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The Titration Data

Start of titration

• large peaks – lots of complex formed on each injection

• equal height – virtually every ligand molecule becomes bound to 
receptor

Around equivalence point

• heat change decreases as binding 
sites fill up

End of titration

• all binding sites occupied 
– no further binding 

• only “dilution peaks” on 
adding more ligand

Raw ITC data is a measure of the power 
difference supplied to each cell
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How do we determine DHo and DGo from the curve?

Stoichiometry

Affinity

Enthalpy
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How do we determine DHo and DGo from the curve?

For 1:1 binding of ligand X and receptor M
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How do we determine DHo and DGo from the curve?

For 1:1 binding of ligand X and receptor M

Shape of the curve depends on the value of c
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The curve shape depends on the “c-value”
[ ]

d

t

K
c M
=

c > 10
sigmoidal curve that 
becomes steeper as c 
increases

c < 10
Curve becomes flatter
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The curve shape depends on the “c-value”
[ ]

d

t

K
c M
=

c > 1000

[M]total >> Kd

slope is too steep to 
determine Kd

• only DHo and n can 
be measured

For very high affinity ligands (low Kd) must use low receptor 
concentration

But low [M] gives very small signals…        Kd limit = 1 nM
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The curve shape depends on the “c-value”

Cholera Toxin binds GM1os with Kd = 40 nM

If [CTB] = 10 µM  then  c = 250
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The curve shape depends on the “c-value”
[ ]

d

t

K
c M
=

c < 1

[M]total << Kd

Curve becomes very 
flat

For very low affinity ligands (high Kd) must use high receptor 
concentration

But proteins often soluble to only 1 mM…        Kd limit = 1 mM
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The Shape of the Binding Curve Changes if Receptor 
Concentration is Higher or Lower than Kd

When [R]t > Kd
Curve shape changes with [R]t
[L]t > [R]t for saturation

High c-value regime

Low c-value regime
Curve shape becomes 
independent of [R]t
[L]t >> Kd for saturation
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Alternative Depiction of the ITC binding Isotherm

For very low affinity ligands (high Kd) can use low c-value titrations

But must add many equivalents of ligand…        Kd limit = 50 mM?

W. B. Turnbull and A. H. Daranas, J. Am. Chem. Soc. 2003, 125, 14859-14866 
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“c-value” curve with heat vs. ligand to Kd ratio

DHo and Kd can still be determined but not 
stoichiometry

Must know concentrations accurately

Cholera Toxin binds GalbOMe with Kd = 15 mM   [CTB] = 145 µM   c = 0.01
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Dissecting the GM1–CTB Interaction

Objective: to evaluate the contribution that each monosaccharide 
makes to the CTB—GM1 interaction in solution.

Disconnect oligosaccharide into fragments and measure each 
interaction with CTB
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Very high and very low affinity systems can 
be studied using competition titrations

• High affinity ligand added to a solution of the low affinity complex

• High affinity ligand displaces the low affinity ligand

• Change in the apparent affinity and apparent enthalpy

• If parameters for one ligand are known, possible to calculate for the other 
ligand
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Example Displacement Titrations

10 µM CTB

110 µM

0 or 25 mM

Very steep curve for high affinity ligand becomes more 
gentle in the presence of a lower affinity competing ligand

high affinity ligand plus 
a lower affinity ligand

high affinity 
ligand
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Summary of ITC Results
 Ligand Kd DGo

calmol-1
DHo

calmol-1
TDSo

calmol-1
n

43.3 ± 1.4 nM -10,040 ± 20 -17,450 ± 30 -7,450 ± 30 1.00

14.8 ± 1.6 mM -2,500 ± 70 -9,020 ± 480 -6,530 ± 480 0.94

2.0 ± 0.2 mM -3,670 ± 90 -4,350 ± 480 -690 ± 480 0.99

7.6 ± 0.8 mM -2,890 ± 80 -10,150 ± 430 -7,270 ± 450 1.06

0.21 ± 0.1 M -920 ± 280 -10,700 ± 8,600 -9,770 ±8340 1.06

GM1os pentasaccharide very high affinity

All fragments very low affinity

W. B. Turnbull, B. L. Precious, S. W. Homans, J. Am. Chem. Soc. 2004, 126, 1047-1054 
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 Ligand Kd DGo

calmol-1
DHo

calmol-1
TDSo

calmol-1
n

43.3 ± 1.4 nM -10,040 ± 20 -17,450 ± 30 -7,450 ± 30 1.00

14.8 ± 1.6 mM -2,500 ± 70 -9,020 ± 480 -6,530 ± 480 0.94

2.0 ± 0.2 mM -3,670 ± 90 -4,350 ± 480 -690 ± 480 0.99

7.6 ± 0.8 mM -2,890 ± 80 -10,150 ± 430 -7,270 ± 450 1.06

0.21 ± 0.1 M -920 ± 280 -10,700 ± 8,600 -9,770 ±8340 1.06

Summary of ITC Results

Big increase in affinity from Gal-GalNAc disaccharide to GM1 
pentasaccharide

However, very similar TDSo for the two ligands.

Contribution of sialic acid is totally enthaplic

Implies extra interactions with no loss of 
conformational entropy
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Change in Conformational Entropy on Binding

Terminal Gal-GalNAc linkage is more flexible than Sia-Gal linkage

• Greatest loss of conformational entropy for Gal binding

Middle subunit as a sausage depiction – the width of the sausage 
indicates how much the backbone atoms move on binding

• Tightening of loop around galactose on binding
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Warning! Be careful how you interpret DHo!

!
DHo
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DHo and TDSo change with temperature: DCp

Depends on DCp – the change in specific heat capacity on binding

– ability of the system to absorb heat

TDSo also dependent on DCp – Entropy-Enthalpy Compensation

DGo is essentially independent of temperature
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DHo can also be affected by coupled reactions  
e.g., proton transfer

-size of DHproton transfer depends on the 
buffer ionisation enthalpy
- must repeat titration in several
different buffers

Ligand binding sometimes 
coupled to proton transfer to or 
from the protein…

DHobserved = DHinteraction + DHproton transfer

H + H+
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Summary
ITC is a useful technique for studying many 
concentration-dependent solution 
phenomena

It is always preferable to have a sigmoidal
curve

• 10 < c <500

However low affinity systems can be studied 
as low c-value curves

Low and high affinity systems can also be 
studied by competition titrations

Beware the effects of coupled reactions and 
DCp when interpreting DHo
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This afternoon –
demonstration of iTC200 

or PEAQ-ITC and ITC 
data analysis

• Cell volume 200 mL

• Faster equilibration

• Faster titrations

at rest sample loading titration washing
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