CEITEC Central European Institute of Technology Brno, Czech Republic

Structural Bioinformatics and Molecular Modeling

Jaroslav Koča

(jkoca@ceitec.cz)

Molecular Modeling

(with computational chemistry as a basis)

Jaroslav Koča

jkoca@ceitec.cz

Experiment vs Simulations

Grenoble -<#>-<#>-

What can be studied?

Levels of Theory

Quantum Mechanics	Molecular Mechanics	Coarse-grained Mechanics
-------------------	----------------------------	---------------------------------

Atomic F	Bead Resolution	
reactivity	conformational movement	domain movement, folding
up to 1'000 atoms	up to 1'000'000 atoms	up to 1'000'000 beads
up to 100 ps	up to μs	up to ms

Grenoble -<#>-<#>-

Quantum Mechanics

Composition of Molecules

Classifications of Methods

The Nobel Prize in Chemistry 1998

Walter Kohn

John A. Pople

The Nobel Prize in Chemistry 1998 was divided equally between **Walter Kohn** "for his development of the **density-functional theory**" and **John A. Pople** "for his development of **computational methods in quantum chemistry**"

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/

Computational Complexity

Formal Scaling	Methods			
	HF	CI metods	MP metods	CC metods
$N^4 -> N^2 -> N^1$	HF, DFT			
N^5			MP2	CC2 (iterative)
N^6		CISD	MP3, MP4(SDQ)	CCSD (iterative)
N^7			MP4	CCSD(T), CC3 (iterative)
N^8		CISDT	MP5	CCSDT
N^9			MP6	
N ¹⁰		CISDTQ	MP7	CCSDTQ (iterative)

Legend

HF – Hartree-Fock method

DFT – density functional theory methods

CI – configuration interaction methods

MP - Møller–Plesset perturbation methods

CC – coupled cluster methods

N – number of basis functions

$$N \approx N_A \overline{N_{BF}}$$

Methods highlighted in the box can provide results, which include part of omitted correlation energy.

Complexity & Accuracy

Coupled cluster methods are able to reach chemical **accuracy** but only for small molecules.

On currently available hardware, it is possible to apply the CCSD(T) method to systems containing up to **50 atoms**.

$$N \approx N_A \overline{N_{BF}}$$

Accuracy

Small Numbers from Big Numbers

RI-BLYP-d3/def2-TZVPP (vacuum)

bambus[6]uril/anion interaction (139 atoms)

"Chemical" Accuracy

error < 1 kcal mol⁻¹

-(#)-

Accuracy

Small Numbers from Big Numbers

RI-BLYP-d3/def2-TZVPP (vacuum)

bambus[6]uril/anion interaction (139 atoms)

"Chemical" Accuracy

error < 1 kcal mol⁻¹

-<#>-

Take Home Message

Quantum Mechanics

- due to dual character (particles/waves) of electrons and nuclei, any chemical system has to be described by the Schrödinger equation (SE)
- albeit very simple notation of SE, its analytical solution is not impossible even for simple chemical systems (two and more electrons)
- > several approximations were introduced that make numerical solution of SE possible but some of them introduces very serious errors (correlation energy)
- it is possible to fix these errors but procedures are very computationally demanding even for small systems (up to 50 atoms)
- once approximate solution of SE is known then any property (including energy) can be easily obtained from wavefunction of given state
- SE is naturally able to describe chemical reactions

Molecular Mechanics

Can we make calculations faster?

Molecular Mechanics

Schrodinger equation - quantum mechanical description

$$\hat{H}\psi_k^{\mathbf{R}}(\mathbf{r}_e) = E_k(\mathbf{R})\psi_k^{\mathbf{R}}(\mathbf{r}_e)$$

approximation
electron motions is omitted
(electron motions is implicitly included in empirical parameters)

$$E_{k}(\mathbf{R}) = E_{bonds} + E_{angles} + E_{torsions} + E_{ele} + E_{vdw} + \dots$$

bonded contributions

non-bonded contributions

Classical physics - mechanical description

Bonded Contributions

Bonds

$$E_{bonds} = \sum_{b=1}^{bonds} \frac{1}{2} K_b (d_b - d_{b0})^2$$

Angles

$$E_{angles} = \sum_{a=1}^{angles} \frac{1}{2} K_a (\theta_a - \theta_{a0})^2$$

Torsion angles

$$E_{torsions} = \sum_{t=1}^{torsions} \sum_{n} \frac{V_{t,n}}{2} (1 + \cos[n\varphi_t - \delta_{t,n}])$$

Bond rotation (torsion)

empirical parameters

Grenoble -<#>-<#>-

Non-bonded Contributions

Electrostatic interactions

$$E_{ele} = \sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{1}{4\pi\varepsilon_o} \frac{q_i q_j}{r_{ij}}$$

van der Waals interactions

$$E_{ele} = \sum_{i=1}^{N} \sum_{j=i+1}^{N} 4\varepsilon_{ij} \begin{bmatrix} \sigma_{ij} \\ r_{ij} \end{bmatrix}^{12} - \begin{bmatrix} \sigma_{ij} \\ r_{ij} \end{bmatrix}^{6}$$

PME – particle meshed Ewald (N log, N)

N – number of atoms

empirical parameters

-<#>-

Take Home Message

Molecular Mechanics

- based on classical mechanics, accuracy is compromised
- empirical parameters (parameter set, force field) derived from experimental or highlevel QM calculations are required
- parameter transferability problems, parameters are derived for limited set of systems (proteins, nucleic acids, lipids, saccharides, etc), no general parameter set yet
- > very fast calculations of systems containing up to millions of atoms
- electrons are not explicitly accounted in the theory thus it is not possible to describe chemical reaction (exceptions: ReaxFF, EVB)
- suitable for study of conformational changes and structure

Potential Energy Surface

Configuration Space

$$E(\mathbf{R})$$

R = point in 3N-dimensional space (N is number of atoms)

$$\mathbf{R} = \{x_1, y_1, z_1, x_2, y_2, z_2, \dots, x_N, y_N, z_N\}$$

Cartesian coordinates of the first atom

Individual points form the configuration space.

Every point in the configuration space represents a unique structure of studied system.

Grenoble -- (#>-

Two-dimensional Case

Models – small molecules

Models - biomolecules

Different visualization models are used to depict various structural features or internal properties of molecules or molecular assemblies, which then improve perceptions of studied systems/problems.

Take Home Message

Potential Energy Surface

- stationary points (local minima and saddle points) are very important for description of reactivity and kinetics of small molecular systems
- > stationary points represents unique structures of molecular system

Grenoble -<#>-<#>-<#

Molecular Dynamics

How to get thermodynamical parameters of complex systems ...

Molecular Dynamics

integration time step (determined by fastest motions in system)

atom positions atom velocities

trajectory

Equation of Motions

$$-\frac{\partial^2 E(\mathbf{R})}{\partial \mathbf{r}_i^2} = m_i \frac{d^2 \mathbf{r}_i}{dt^2}$$

$$\mathbf{F}_i = m_i \mathbf{a}_i$$

Molecular Dynamics

Evolution of system in time

integration time step (determined by fastest motions in system)

atom positions atom velocities

trajectory

Sampling problem

$$1 \mu s = 10^9 fs$$

1631 atoms, AMBER, GPU acceleration

1 step ~ 1 ms CPU/GPU time 10⁹ steps ~ 12 days CPU/GPU time

Characteristic timescales:

- Protein folding (ms)
- Chemical reactions (ms, s, h)

Sampling Problem

10 ns long simulation is able to discover free energy landscape with depth only about **3 kcal/mol**.

Multiscale Methods QM/MM Methods

How to describe reactivity occurring in biomolecules (enzymes)?

Enzymatic Reactions

MutH Enzyme: ~4,300 atoms Water: ~42,000 atoms Total: $\sim 46,500$ atoms

Enzymatic Reactions

Enzyme: $\sim 4,300$ atoms

Water: \sim 42,000 atoms

Total: $\sim 46,500$ atoms

MutH

Beyond any QM method!

Enzymatic Reactions

 H_2O

Grenoble -<#>-<#>-

HO —R₃₁

Introduction - OGT glycosyltransferase

- \bullet Uridine diphospho-*N*-acetylglucosamine: polypeptide β-N-acetylaminyltransferase; PDB ID: 3PE4
- ❖ Enzymatic transfer of N-acetylglucosamine molecule on Ser/Thr residue of protein
- ❖ Inverting glycosyltransferase of the GT-B family
- Post-translational modification: first reported in 1984

OGT Crystal Structure (Walker et al, 2011)

OGT Catalytic Site

Different Mechanisms Proposed for OGT

- His498 as catalytic base (M_{His}) (Lazarus et al. 2011 Tvaroska et al. 2012)
- 2. α-phosphate as base (MPO4) (Schimpl et al. 2012)

3. Water molecule for shunting proton to ASP554 (MAsp) (Lazarus et al. 2012)

Most Probable Reaction Path – M_{PO4}

Nobel Laureates in Chemistry 2013

Martin Karplus

Université de Strasbourg, Strasbourg, France, Harvard University, Cambridge, MA, USA

Photo: © S. Fisch Michael Levitt

Stanford University School of Medicine, Stanford, CA, USA

Photo: Wikimedia Commons

Arieh Warshel

University of Southern California, Los Angeles, CA, USA

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/

Grenoble -<#>-<#>-

Take Home Message

Figure 2. Newton and Schrödinger's cat. Previously, classical physics and quantum chemistry belonged to rivalling worlds. The Nobel Laureates in Chemistry 2013 have opened a gate between those worlds and have brought about a flourishing collaboration.

- study of chemical reactions occurring in very large molecular assemblies is possible by QM/MM methods ("routine" calculations)
 - enzymatic reactions (drug development)
 - catalysis in solid state (zeolites, industry)
- many unresolved issues (QM accuracy, MM polarization, boundary problems, ...)

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/

Thank you for your attention!

Central European Institute of Technology
Masaryk University
Kamenice 753/5
625 00 Brno, Czech Republic

www.ceitec.muni.cz | info@ceitec.muni.cz