02/07/2016

Kinetic crystallography of a
glycosyltransferase

Antoine Royant
Institut de Biologie Structurale & European Synchrotron Radiation Facility

et
.. e® .. ® _-..:_- '.oo:-i.-_
13 . .
.
o I S
Soce
o nstitut de Biologie Structurale

ESRF

Structural Glycoscience Workshop — Grenoble, June 29, 2016

1. Principles of kinetic crystallography
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What is kinetic protein crystallography?

* X-ray protein crystallography -> structure determination of proteins that are, in
principle, in a resting state

* Proteins are often active in the crystalline state (reaction rate potentially affected)

* Kinetic crystallography = structure determination of unstable species:
- Reaction intermediate states (unstable in time)

- X-ray sensitive states (unstable in X-ray dose)

* Example of enzymaticreaction: E + S —— ES ———~—EP —— E +P

Standard free energy
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* TRIGGERING: by diffusion of substrate or irradiation with visible light/X-rays

* SYNCHRONISATION: the reaction needs to be initiated in all molecules at the same time —
potential significant problem in soaking experiments

* HOMOGENEITY: the same proportion of molecules needs to be activated throughout the
crystal — potential problem in crystals with high optical density in irradiation experiments

A crystal structure is the average of billions of molecules




Possible types of experiments

Reaction triggering
= Uniform: ~10'* molecules in the crystal
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¢ EQUILIBRIUM: Initiate reaction at room temperature until equilibrium is reached (easiest)

Reaction Monitoring

* TIME-RESOLVED: genuine ‘live’ crystallography - very demanding on crystal properties:
diffraction quality, robustness, repeatability of reaction

* STEADY-STATE: initiate reaction continuously and collect
* INTERMEDIATE TRAPPING: ‘Trigger-freeze’ and ‘Freeze-trigger’

‘Trigger-freeze’ trapping approach

“Trigger-freeze” * Initiate the reaction in the protein crystal at room
. temperature, for instance by soaking with substrate
5
g = TRIGGER the reaction
: I
8 \ * Flash-cool crystals at different time points
g v

> = FREEZE the reaction

Reaction coordinate / Time
* Solve X-ray structures
*Requirement: applicable to reactions needs to be slow

enough compared to the speed of flash-cooling (t > ~10
seconds)

* Tricks can be used to slow down reactions: mutation,
temperature, pH
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Standard free ener

‘Freeze-trigger approach’

\ “Freeze-trigger” * Block the whole system by flash-cooling the crystal at

cryogenic temperature
= FREEZE the reaction

!
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Reaction coordinate / Time

* |nitiate the reaction (by light, sometimes with X-rays)

Activation energy/KT

= TRIGGER the reaction

-
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* Apply temperature profile to provide the system with
TS some added free energy which will allow the reaction to go
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e
|e+ £ compounds
initial state o
7 e
ES
ExP
fnal atate| — —_— y- =)
Course of reaction
ot o s o ()

Use in crystallo spectroscopy to monitor
reactions (when possible)

¢ Goal: focus and collect light on a ~10-100 um diameter spot

¢ How: Magnifying objectives, optical fibers, precision translation
stages, video camera, lasers

* For protein micro-samples (crystal / nL solution)

¢ Low and room temperature experiments (dehumidifier)

¢ One thing to keep in mind: Crystals are extremely concentrated in
chromophores -> potential artefacts to look at:

- Saturation of absorption peaks (+ loss of signal)
- Apparent shift of fluorescence peaks

- Difficulty of optimizing Raman signal
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Experimental setup of the Cryobench at the ESRF

Cryobench

e Located next to beamline ID29

A microspectrophotometer consists of
* a goniometer

* 4 objectives

* a video microscope

* a cryostream

-> All point at the sample = mimic of the structural biology beamline setup

Off-line setup: different modes of operation

Series of absorption spectra

Absorption
mode

Fluorescence
mode

Raman spectrum
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Raman mode
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Future automated setup

¢ Minidiffractometer MD2-M

* Sample Changer SC3

¢ Objectives (x3) + Raman

2. Examples of kinetic crystallography
experiments (coloured proteins)
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2.1 Atime-resolved diffraction experiment

Jung et al. Nature Chemistry 2013 ‘Volume-conserving trans—cis isomerization pathways in photoactive
yellow protein visualized by picosecond X-ray crystallography’

* Photoactive yellow protein = small cytosolic photoreceptor thought to be responsible for the
negative phototactic response of certain bacteria

* the reaction is repeatable

* laser pulse = 35 or 100 ps

« delay between laser and X-ray pulses = 0 to 20 ns Performed at ESRF and APS

Front view

Side view

2.2 A(trivial) ‘trigger-freeze’ trapping experiment

Nakamura et al. Nature 2012 ‘Watching DNA polymerase n make a phosphodiester bond’

* Native polymerase co-crystallized with DNA and dATP without Mg?*

* Soaking with Mg?* = TRIGGER

* Reaction 20-100 times slower in crystals than in solution (reduced thermal motion)
* FREEZING after 40to 300 s

405 (RS) 80s 1408 2305

A
A

R
% TE)%. aate
Rl Sl

e

T by '\, (5
%'Bil{-l"c \ A &’h&:;z_ L ¥
S13 Mol MO e

7

E116 013 Mi4

%j

{ T

02/07/2016



2.3  An elaborated ‘trigger-freeze’ trapping experiment

Superoxide Reductase (SOR) converts the toxic superoxide ion into hydrogen peroxide

0, + 2H* + SOR(Fe?*) & H,0, + SOR(Fe3*)

solvent
vacant
coordination

Fe3* + H,0, Trap the proposed “hydroperoxo”

Intermediate in crystallo ?
+'H+

Puzzling crystallographic data

Experiment:

* Use of law of mass action

¢ Point-mutant slowing down the reaction

Ir(IV)Clg hexachloridate
Ir(IV)

FREEZE
Intermediate
At 77K

Xtal 3min (TRIGGER)

H,0, ;) H,0,
O, + H* + Fe?*> Fe3+*-O0H - > Fe3* + H,0,

Oxidized Iron

+ Limited crystallographic resolution (1.95 A) (owing to H,0, soaking)
¢ Unexplained electron density peaks, relevant intermediate species?
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In crystallo Raman Spectroscopy of SOR

Signature of iron-peroxide
intermediate
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Pre-resonant Raman spectra @ 785nm L= .
End-on Iron-peroxide intermediate

Katona et al., Science (2007)

2.4 A ‘freeze-trigger’ trapping experiment

Structural stud of the photocycle of bacteriorhodopsin s
bRez

-5 V \455
Ogao Ksoo

L)

- Lo * Crystals flash-cooled in lig. N2 (FREEZE)
\ //' *T=110K, green light illumination + X-ray = steady-state
~5ms M“,‘,/“W‘ *T=170K, green + red light (TRIGGER) -> 100 K = Freeze-trigger
H* H* * Build-up of intermediates verified by absorption spectra

Cytopla_sm;:c side ) c

K-state structure L-state structure

Edman et al., Nature 1999 Royant et al., Nature 2000
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3. Studies of a human glycosyltransferase
by kinetic crystallography approaches

3.1 Glycosyltransferases

Glycosyltransferases (GTs) catalyses the transfer of a sugar residue from a donor to

a wide range of specific molecules
Two mechanisms of transfer:

Donor substrate ﬁ
N 0—#—OR
' i
O0—P—0OR
|
+ o Inverting
10 R, Retaining
TOR
Acceptor substrate
i
'O—Fl'—OR
o
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Mechanism of retaining glycosyltransferases?

Mechanism 1 Mechanism 2

Oxocarbenium intermediate

Covalent intermediate e
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Human blood Group synthases GTA and GTB

e ABO is the most important blood group system in transfusion medicine

HO OH
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e
Ho H-disaccharide antigen
w (linked to protein or lipid)
OH
OH
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3.2 TRIGGER-FREEZE approach with substrate acceptor

Enzymatic reaction
| AA(GIy)B

a8
& Mucleotide LY
donor | — [R—
— —
Nucleotide eT .
- acceptor

-~ Sacchaide

-
s‘r".
%

If reaction slow enough

Trigger = soaking

Experiment:

TRIGGER : soaking with .+ = UDP-Gal or UDP-GalNAc in presence of #&# = H20 or glycerol

FREEZE after a few minutes to several hours

TRIGGER-FREEZE approach with UDP-Gal

UDP-Gal present at 100% after 3 hours of soaking
at 75% after 6 hours of soaking

After overnight soaking, crystals do not diffract any more
-> reaction too slow for our experimental conditions

02/07/2016
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TRIGGER-FREEZE approach with UDP-GalNAc

No structure ever of a GT in complex with UDP-GalNAc alone, presumably because the
reaction is too fast

After 90 sec After 4 min

UDP only in active site 50% UDP + 50% UDP-GalNAc!!!

After 24 min of soaking with UDP-GalNAc:
mixture of various states

e
SER o D
His 301 l" Glu303 .

His 301 :{
'l

 Three structures can be tentatively modelled
¢ For longer times, UDP in active site
¢ Fast reaction, which must be slowed down by substrate inhibition
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3.3 Principle of the caged compound approach
FREEZE - TRIGGER
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NPE cage

3
"
2 L

H
o

02/07/2016

14



Photolysis at 100 K monitored by UV-vis absorption
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Structure of the cage in CCO1 bound to the enzyme

* Obtained in presence of glycerol as cryoprotectant

« Two space groups

¢ At least three conformations — cage not well-resolved

Space group P2,2,2,

Space group C222,
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Structure of the cage in CC02 bound to the enzyme

¢ Obtained in presence and absence of glycerol as cryoprotectant

With glycerol Without glycerol

Summary of caged compound results

Inhibition Photolysis Localization | Conformatio
effect efficiency in structure | n of sugar

Ccco1 NPE Y, Y; Y; Tucked-
under or
solvent A
CC02 NVOC v Y, Y, Solvent B
CCo3 NVOC Y, nd X ?
Ccco4 NVOC v nd X Tucked-
under
CC05 NVOC X nd X X
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