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Structural Glycobiology

structural glycobiology is the study of how complex glycans are built.

A variety of imaging methods are used, to view molecules in three dimensions
to see how they are assembled, how they function, and how they interact.
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Where are such complex glycans found ?



. The Global Biomass Distribution (Gigatons Carbonl
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Evolution of the Depiction of Monosaccharides
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Fischer assigned the dextrorotatory glucose (via glucaric acid) the projection with the OH group at C5 pointing to
the right. But the absolute configuration was established in 1951 (Bijvoet) by X-ray crystallography



Symbol Nomenclature for Graphical Representation
of Glycans (2015), Glycoblology, 25, 1323-1324
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Extending the Symbolic Representation of Monosaccharides
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Residue Letter Name: Rib, Ara, Xyl, Lyx, All, Z‘lng Conformhatlon. f

pyranoses in the D-configuration are
Alt, Glc, Man, Gul, Ido, Gal, Tal,.... assumed to have 4C, chair conformation;
[O-ester and ethers]: (when present) are shown attached those in the L configuration are assumed to
to the symbol with a number, e.g. have 1C, chair conformation. Otherwise, the
6Ac for 6-O-acetyl group, 35 for 3-O-sulfate group ring conformation is indicated in the symbol,
6P for 6-O-phosphate group, 6Me for 6-0O-Methyl group as 25, in the case of a-L-Idopyranose.
36Anh for 3,6-anhydro, Pyr for pyruvate group N or S indicates the conformation of the five

membered rings on the conformational
Absolute Configuration: D or L wheel. o
The D-configuration for monosaccharide and the L o HU%\
configuration for Fucose and Idose are implicit and aH
does not appear in the symbol. Otherwise the L ooE ?
configuration, is indicated in the symbol, as in the case al_ldopA[2S] .
of Arabinose or L-Galactose.
For those occurring in the furanose form, a letter N or
Sisinserted in the symbol, indicating the northern (N)
or Southern (S) conformation of the five membered
ring.

Anomeric Configuration.
The nature of the glycosidic configuration (a or B) is
explicitly set within the symbol.



IFrom Symbol Representation to 3D- Structures
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I Disaccharides & Higher Oligosaccharides

eHave a very high number of monomers
(substitution...).

e Have many different ways of connecting
monomers.

e Have branching points.
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All chemical compounds are described with IUPAC, Simplified Molecular Input Line Entry

Specification syntax (SMILES), and InChi encodings that are readable by the vast majority
of chemo-informatics tools.

Glycans are encoded in GlycoCT,
WURCS (Web3 Unique Representation of Carbohydrate Structures)
LINUCS (LInear Notation for Unique description of Carbohydrate Sequences).



From Monosaccharides
to

Polysaccharides
Through Crystallography

X-ray interact with the spatial distribution of Valence electrons.

Neutrons are scattered by the atom nuclLei.

Electrons feel the influence of both the positively charged
atomic nuclei and the surrounding electrons.



Molecular & Crystal Structures of Carbohydrates

Experimental Conditions and Limitations (X and N)

X- Neut
X-ray and Neutron have wavelengths ™ _ . .
. . . Scattering proportional to Z Scattering not proportional to Z
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Molecular & Crystal Structures of Carbohydrates

Crystalline Conformations of Oligosaccharides

Cambridge Structural Data Base (CSDB) ~ 4000 entries

Unsubsitituted disaccharides ~ 60 structures
Unsubsitituted trisaccharides ~ 30 |
structures = P
Unsubsitituted tetraccharides < 5 structures Jh«r‘k’{rf PN

Cyclodextrins & cyclic oligoamyloses : > 300 structures

Difficulty to crystallize oligosaccharides having molecular weight
1000 to 5000



Molecular & Crystal Structures of Carbohydrates

Hydrogen Bonding in Crystalline Oligosaccharides
Analysis of high accurate X-ray analysis — Neutron diffraction

i . A X—HoA ~ 160°+ 20°
dX-dN =(C-H) = -0.096(7)
dX-dN =(0-H) = -0.155(10) A
CHO bondS XG a+6+86 ~360

hydrophobic
interaction

steric effect

1

>
A1 X—H .......... A1 > 900

;i S A, S e A, > 90°

nnnnnnnnnn tional
CH--0O hydrogen bond

'A3 K—H weeeeee A3 > 90°

Maximize the Hydrogen Bond interactions throughout the
participation of all hydroxyl groups and as many rings oxygen. Two and
three-centered bonds

Maximize cooperativity by forming as many finite and infinite
chains of hydrogen bonds as possible.



Molecular & Crystal Structures of Carbohydrates

Packing Features




Molecular & Crystal Structures of Carbohydrates

Powder Diffraction

1. Identification of Crystalline Polymorphs

2. Solving Crystal Structures — Rievelt Method + Molecular Modelling
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Crystalline Conformations of Oligosaccharides in Proteins

Experimental Conditions and Limitations
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Protein-Carbohydrate Crystal Structures

Protein-Carbohydrate Interactions
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l:rystalline Conformations of Oligosaccharides in Proteins
L —

Oligosaccharides -Lectin Complexes




Crystalline Conformations of Polysaccharides

X-Ray Fiber Diffraction of Polysaccharides




Crystalline Conformations of Polysaccharides

X-Ray Fiber Diffraction of Polysaccharides




Crystalline Conformations of Polysaccharides
Synchrotron X-Ray Diffraction of Polysaccharides

20 microns 3 o (7 e
“4 .~‘, 2\ . i
D. Popov, 2009, Macromolecules, 42, 1167-1174




Crystalline Conformations of Polysaccharides

X-Ray Fiber Diffraction using Synchrotron and Neutron Radiations
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Crystalline Conformations of Polysaccharides

Electron Diffraction of Polysaccharides

Electrons are charged particles and interact with matter through the
Coulomb forces. The incident electrons feel the influence of both the
positively charged atomic nuclei and the surrounding electrons.

Electron diffraction of solids is usually performed in a Transmission
Electron Microscope (TEM) where the electrons pass through a thin
film of the material to be studied. The resulting diffraction pattern is
then observed on a fluorescent screen, recorded on photographic
film, on imaging plates or using a CCD camera.

ED is subjected to several important limitations.

The sample must be electron transparent, i.e. the sample
thickness must be of the order of 100 nm or less.

Need careful and time consuming sample preparation.
Many samples are vulnerable to radiation damage

caused by the incident electrons.




Helical Structures of Polysaccharides




From in cubo
to
in silico




Conformational Space of Oligosaccharides
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Combinatorial building m

Assumption:
Because of the bulky and (almost) rigid nature of the monosaccharide unit, the
conformation of each linkage is independent on the other

Methods :
Combine the lowest energy minima of each disaccharide map

Not true for ot ge
- long range interactions But very useful for building

- branched structures starting structures!



Disaccharide: Structural Descriptors
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Molecular Mechanics / Dynamics

Initial positions given by the PDB
Initial velocities determined based on a Boltzmann
distribution of velocities at the target temperature
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250 ns single trajectory

This ensemble of different structures
is not necessarily ‘a mess’ not all
possible conformations are allowed or
equally populated and some of these
conformations may actually be
functionally important

Glycans Can be Highly Flexible and Dxnamic



Molecular Modeling at work
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Glycan Active Proteins

Modifications Degradation

Methyl | | Transferases
Sulpho On a single glycan

Glycosyl Transferases Glycosyl Hydrolases

Binding

Carbohydrates

Carbohydrate Binding

e ail

Modules
On a solid substrate
Interaction / Recognition
Chemokines
Lectin I Ogomo‘




A Wide Range of Applications

Cellulose Deconstruction GlycosaminoGlycan Protein
Interaction



Glycan Receptor Binding by Mumps Virus

Hemagglutinin-Neuraminidase R




Membrane Assisted Biosynthesis of Glycolipid

Chloroplast R

7

Outer Envelope
Membran

Inner Envelope Membrane

Stroma

Stroma  Thylakoids



From
Structures to
3D Databases



Glyco3D:https://glyco3d.cermav.cnrs.fr/home.php

‘ GLYCO3D 2.0 \

Disac3-DB BioOligo-DB Polysac3-DB NMR oligo

e

GAG-DB CBMcarb-DB Unilectin mAbscarb-DB Polys-Glycan Builder

ol X &N @ &2

Monosac-DB Other tools




Encoding of Glycan Structures

Lewis X and Sialyl Acid on Core 2
Neu5Ac a2-3 Gal b1-3 (Gal b1-4 (Fuc al-3) GIcNAc b1-6) GalNAc
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1b:a-dgal-HEX-1:5

2s:n-acetyl

3b:b-dgal-HEX-1:5
4b:a-dgro-dgal-NON-2:6|1:a|2:keto|3:d
5s:n-acetyl
6b:b-dglc-HEX-1:5
7s:n-acetyl
8b:a-lgal-HEX-1:5|6:d
9b:b-dgal-HEX-1:5
LIN

1:1d(2+1)2n
2:10(3+3)3d
3:30(3+2)4d
4:4d(5+1)5n
5:10(6+1)6d
6:6d(2+1)7n
7:60(3+1)8d
8:60(4+1)9d

GlycoCT




e-Glycoscience

Continued advances in molecular

modeling has generated insights for
understanding glycan structures and
properties. Robust, validated informatics
tools are developed in to enable accurate
and fast determination of complex
carbohydrate and glycoconjugate structural
prediction, computational modeling, and
data mining.

Database have been developedand cover

including mammalian, plant and microbial
carbohydrates and glycoconjugates.

The carbohydrate structural database needs to
be fully cross-referenced with databases
that provide complementary biological
information.

There should be a requirement for deposition
of new structures into the database using a
reporting standard for minimal information.
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Tools and DataBases

PORTALS

REPRESENTATIONS

EXPERIMENTAL DATA

GENOME
GLYCOME

E' GLYCOBIO
INFORMATICS

GLYCO-PROT/PEPT

N

GLYCAN

GLYCAN BINDING

9\GLYCOLIPIDS

7\,

CAZYmes

POLYSACCHARIDES

GlyGen: Computational and Informatics Resources for Glycoscience
This web portal allows exploring this data and performing unique searches that
cannot be executed in any of the integrated databases alone.



An avalanche of data...
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Global scientific output doubles every nine-years

Number of active researchers world-wide 8 Millions
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Knowledge, Experience, Creativity

Knowledge

Experience

r—

Creativity




Be FAIR to Glycans...

Update on Standards: Glycan data management and exchange require consolidation and
compliance to standards,: Minimum Information Data Required for Glycomics (MIRAGE)

FAIR Principles; Findability, Accessibility, Interoperability and Reusability.

Many data are not fully characterized, the lack of information on the metadata (explaining and
characterizing the measured or computed data), the ontologies relationships in metadata),
and the workflow of different research groups are difficult to adjust. Most research data are
neither, findable nor interoperable.

TRUST Principles: Transparency, Responsibility, User focus, Sustainability, Technology

Cross-Referencing: Linking experimental, theoretical, and biological data using common
schemes and ontology will generate a new level of Glycoscience

Data Modeling: Implementing multiscale data (spatial & temporal) faces heterogeneities:
simulation steups, force fields, meaning and representation of the produced data
Need for selection and compressions stratefies compatible with the type and amount of data

Big Data and Al Approach : Standardized, structured e well annotated data required to Deep Learning
methods



It is to realize that
\ Structural Glycoscience

| may be fun and challenging

I Thank you and invite you to visit.. ..
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