

Protein-carbohydrate interactions: Isothermal Titration Calorimetry

Dr Bruce Turnbull

School of Chemistry and
Astbury Centre for Structural Molecular Biology
University of Leeds

Branched oligosaccharide holds the protein in a "two fingered grip" Extensive H-bonding between the three terminal residues and the protein Remaining sugars point away from the protein – site of lipid attachment

E.A.Merritt, S. Sarfaty, F.van den Akker, C. L'Hoir, J.A. Martial, W.G.J.Hol, Prot. Sci. 1994, 3, 166-175; E.A. Merritt, P. Kuhn, S. Sarfaty, J.L. Erbe, R.K. Holmes, W.G.J. Hol, J. Mol. Biol. 1998, 282, 1043-1059.

Receptor-ligand interaction

X $K_a = \frac{[MX]}{[M]X}$

Units: L/mol

 $K_d = \frac{\boxed{M} \boxed{X}}{\boxed{MX}}$ Units: mol / L i.e. K_d is a concentration

High affinity = large K_a , small K_d

Basic Thermodynamics...

$$\Delta G^{\circ} = -RT \ln K_a$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

Free Energy Enthalpy Entropy

High affinity = large K_a , small K_d , large $-\Delta G^o$

Enthalpy

Changes in heat

Structure of the complex

- Hydrogen bonding
- ·Van der Waals
- Structure of the solvent
 - i.e. water

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

Entropy

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

Changes in disorder

- Independent rotational and translational degrees of freedom
 - A complex is less disordered than two molecules
- Internal conformational dynamics
 - •Flexible molecules lose entropy on binding
- Dynamics of the solvent
 - i.e. water

Calorimetry – Measuring Heat

- Lavoisier and Laplace calorimeter to measure the element "caloric" in a sample of combustible oil (1784)
- oil burned in a lamp surrounded by ice
- · heat determined by measuring amount of melted ice

Microcalorimetry

Differential Scanning Calorimetry

Solution heated/cooled from 10-100 °C

Used to measure unfolding temp and $\Delta \textbf{\textit{H}}^o$ for DNA, proteins etc.

Isothermal Titration Calorimetry

Sample maintained at constant temp while two solutions are mixed

Used to measure

- protein-ligand interactions
- enzyme reactions
- ∆H°

How do we determine ΔH° and ΔG° from the curve?

For 1:1 binding of ligand X and receptor M

$$X + M \Longrightarrow MX$$

$$\frac{dQ}{d[X]_{t}} = \Delta H^{\circ} V_{0} \left[\frac{1}{2} + \frac{1 - \left(\left[X \right]_{t} / \left[M \right]_{t} \right) - \left(\frac{K_{d} / \left[M \right]_{t}}{M} \right)}{2\sqrt{\left[1 + \left(\left[X \right]_{t} / \left[M \right]_{t} \right) + \left(\frac{K_{d} / \left[M \right]_{t}}{M} \right) \right]^{2} - 4\left(\left[X \right]_{t} / \left[M \right]_{t}} \right)} \right]$$

Shape of the curve depends on the value of c

$$c = \frac{1}{K_d/[\mathbf{M}]_t} = \frac{[\mathbf{M}]_t}{K_d} = K_a[\mathbf{M}]_t$$

The curve shape depends on the "c-value"

$$c = \frac{[M]}{K_d}$$

c > 10 sigmoidal curve that becomes steeper as c increases

c < 10 Curve becomes flatter

The curve shape depends on the "
$$c$$
-value"
$$c = \frac{[M]}{K_d}$$

$$c > 1000$$

$$[M]_{total} >> K_d$$
 slope is too steep to determine K_d • only ΔH^o and n can be measured
$$[X]_t/[M]_t$$
 For very high affinity ligands (low K_d) must use low receptor concentration
$$[M]_{total} >> K_d$$
 slope is too steep to determine K_d • only ΔH^o and n can be measured
$$[X]_t/[M]_t$$

Objective: to evaluate the contribution that each monosaccharide makes to the CTB—GM1 interaction in solution.

Disconnect oligosaccharide into fragments and measure each interaction with CTB

Very high and very low affinity systems can be studied using competition titrations

- · High affinity ligand added to a solution of the low affinity complex
- · High affinity ligand displaces the low affinity ligand
- · Change in the apparent affinity and apparent enthalpy
- If parameters for one ligand are known, possible to calculate for the other ligand

Summary of ITC Results

Ligand	K ₀	∆G°	Δ H °	T∆S°	n
		calmol⁻¹	calmol ⁻¹	calmol⁻¹	
000	43.3 ± 1.4 nM	-10,040 ± 20	-17,450 ± 30	-7,450 ± 30	1.00
0	14.8 ± 1.6 mM	-2,500 ± 70	-9,020 ± 480	-6,530 ± 480	0.94
-\$0	2.0 ± 0.2 mM	-3,670 ± 90	-4,350 ± 480	-690 ± 480	0.99
О П	7.6 ± 0.8 mM	-2,890 ± 80	-10,150 ± 430	-7,270 ± 450	1.06
♦	0.21 ± 0.1 M	-920 ± 280	-10,700 ± 8,600	-9,770 ±8340	1.06

GM1os pentasaccharide very high affinity

All fragments very low affinity

W. B. Turnbull, B. L. Precious, S. W. Homans, J. Am. Chem. Soc. 2004, 126, 1047-1054

Summary of ITC Results

Ligand	K _d	Δ G° calmol⁻¹	Δ H ° calmol⁻¹	T∆S° calmol⁻¹	n
000	43.3 ± 1.4 nM	-10,040 ± 20	-17,450 ± 30	-7,450 ± 30	1.00

Big increase in affinity from Gal-GalNAc disaccharide to GM1 pentasaccharide

0	7.6 ± 0.8 mM	-2,890 ± 80	-10,150 ± 430	-7,270 ± 450	1.06
	1				

However, very similar $T\Delta S^{o}$ for the two ligands.

Contribution of sialic acid is totally enthaplic

Implies extra interactions with no loss of conformational entropy

Change in Conformational Entropy on Binding

Terminal Gal-GalNAc linkage is more flexible than Sia-Gal linkage

• Greatest loss of conformational entropy for Gal binding

Middle subunit as a sausage depiction – the width of the sausage indicates how much the backbone atoms move on binding

Tightening of loop around galactose on binding

Warning! Be careful how you interpret ΔH° !

ΔH° and T ΔS° change with temperature: $\Delta C_{\rm p}$

$$\Delta C_p = \frac{\Delta H_2^o - \Delta H_1^o}{T_2 - T_1}$$

$$\Delta C_{p} = \frac{T_{2} \Delta S_{2}^{o} - T_{1} \Delta S_{1}^{o}}{T_{2} - T_{1}}$$

Depends on ΔC_p

- the change in specific heat capacity on binding
- ability of the system to absorb heat

 $T\Delta S^{o}$ also dependent on ΔC_{p} – Entropy-Enthalpy Compensation

 ΔG° is essentially independent of temperature

ΔH° can also be affected by coupled reactions e.g., proton transfer $\Delta H_{\text{observed}} = \Delta H_{\text{interaction}} + \Delta H_{\text{proton transfer}}$ Phosphate ΔH (kcal mol⁻¹) Ligand binding sometimes MOP S coupled to proton transfer to or from the protein... Imida zole -size of $\Delta H_{\mathrm{proton\; transfer}}$ depends on the TRIS buffer ionisation enthalpy - must repeat titration in several different buffers 80 10 ΔH ionisation (kcal mol⁻¹)

